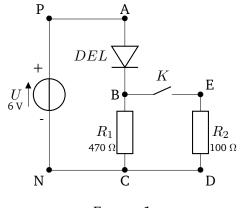
1 Objectifs

Réaliser un circuit électrique d'après un schéma donné. Réaliser des mesures de tensions électrique et d'intensité électrique dans un circuit. Exploiter la loi des nœuds, la loi des mailles.


2 Etude d'une lampe frontale avec différents modes d'éclairage

2.1 Principe de fonctionnement

Certaines lampes frontales possèdent plusieurs modes d'éclairage : un mode "économique" pour une autonomie maximale et un mode "forte puissance" pour un éclairage maximal.

Le fonctionnement d'une telle lampe peut être simulée avec le montage électrique de la figure 1 ci-dessous.

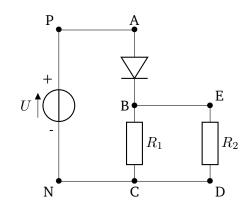


FIGURE 2

- ① Représenter sur le circuit de la figure 2 ci-dessus les intensités suivantes :
 - I dans la branche du générateur entre le générateur et la DEL
 - I' dans la branche du générateur entre le la résistance R_1 et le générateur
 - I_1 dans la branche de la résistance R_1
 - I_2 dans la branche de la résistance R_2
- ② Donner le nom de l'appareil qui permet de mesurer l'intensité dans un circuit. Comment est-il branché et quelles sont les bornes utilisées pour cet appareil ?
- ③ Représenter cet appareil, permettant de mesurer l'intensité *I*, sur la figure 2.
- ④ Représenter sur le circuit de la figure 2 ci-dessus les tensions suivantes :
 - *U*_{DEL} aux bornes du générateur la diode
 - U_1 aux bornes de la résistance R_1
 - U_2 aux bornes de la résistance R_2

Les tensions seront représentées de façon à ce qu'elles soient positives. Avec la convention récepteur, si les flèches de tension et d'intensité sont de sens opposés alors la tension est positive.

- ⑤ Donner le nom de l'appareil qui permet de mesurer la tension dans un circuit. Comment est-il branché et quelles sont les bornes utilisées pour cet appareil ?
- © Représenter cet appareil, permettant de mesurer la tension *U* aux bornes du générateur, sur la figure 2.

2.2 Etude des deux modes d'utilisation de la lampe frontale

- ① Réaliser le montage de la figure 1. Puis décrire l'éclat de la DEL lorsque le circuit est fermé (interrupteur fermé). Lorsque l'interrupteur est fermé, on réalise un circuit en dérivation.
- ② Décrire l'éclat de la DEL lorsque le circuit est ouvert (interrupteur ouvert, pour cela on débranchera le fil au point B). L'interrupteur est ouvert, on réalise un circuit en série.
- 3 Associer à chaque mode de fonctionnement de la lampe (mode économique ou mode de forte puissance) le type de circuit en série ou en dérivation.

2.3 Mesures de tension lors des deux modes d'utilisation de la lampe frontale

- ① Ajouter au circuit précédent l'appareil pour mesurer successivement les quatre tensions U, U_{DEL} , U_1 et U_2 . Donner les valeurs de ces tensions dans un tableau en circuit ouvert et fermé.
- ② En circuit ouvert (série), donner la relation entre U, U_{DEL} et U_1 .
- 3 Enoncé la loi relative à la tension (loi des mailles) dans un circuit en série.
- 4 En circuit fermé (dérivation), donner la relation entre U_1 et U_2 .
- ⑤ Enoncé la loi relative à la tension dans un circuit en dérivation.

2.4 Mesures d'intensités lors des deux modes d'utilisation de la lampe frontale

- ① Modifier le circuit précédent en plaçant l'appareil pour mesurer successivement les quatre intensités I, I' I_1 et I_2 . Donner les valeurs de ces intensités dans un tableau en circuit ouvert et fermé.
- ② En circuit ouvert (série), donner la relation entre I, I' et I_1 .
- 3 Enoncé la loi relative à l'intensité dans un circuit en série.
- 4 En circuit fermé (dérivation), donner la relation entre I, I_1 et I_2 .
- ⑤ Enoncé la loi relative à l'intensité (loi des nœuds) dans un circuit en dérivation.
- © Conclure sur les deux modes de fonctionnement de la lampe frontale.