Exercice 7 (D'après bac STL SPCL Métropole Septembre 2014)

Le gaz de ville alimentant les chaudières est essentiellement constitué de méthane CH₄. On se propose dans cette partie de calculer le volume de dioxyde de carbone dégagé par les chaudières à gaz en une année.

1. Écrire et équilibrer l'équation suivante de la combustion du méthane dans le dioxygène de l'air :

...
$$CH_4 + ... O_2 \rightarrow ... CO_2 + ... H_2O$$

L'énergie fournie par les chaudières en une année vaut $Q_{ch} = 1,84 \times 10^6 \text{ kW.h.}$

2.a. À l'aide de l'annexe B1, calculer la quantité de matière n (en mol) de méthane consommée en une année.

Donnée : 1 kW.h = 3600 kJ

2.b. En déduire le volume V de dioxyde de carbone dégagé par la combustion, sachant que le volume d'une mole de gaz dans les conditions habituelles de température et de pression est de 24 L.mol^{-1} (à $20 \, ^{\circ}\text{C}$ et $1.013 \times 10^{5} \, \text{Pa}$).

Annexe B1 : pouvoirs calorifiques de différents combustibles (origine : Wikipédia)

Rappel : le pouvoir calorifique ou (PC) d'un combustible (dans les conditions normales de température et de pression) est l'énergie qu'il libère lors d'une combustion avec le dioxygène.

Carburant	PC (MJ.kg ⁻¹)	PC (kJ.mol ⁻¹)
Méthane	50,01	802,27
Propane	46,353	2044,13
Pentane	45,357	3272,45